The correct option is C 2
√4−x+√x+9=5
For the square root to be defined
4−x≥0⇒4≥xx+9≥0⇒x≥−9
⇒−9≤x≤4⋯(1)
Now,
√x+9=5−√4−x
Squaring on both the sides, we get
⇒x+9=25−10√4−x+4−x
⇒10√4−x=20−2x⇒5√4−x=10−x
Squaring on both the sides, we get
⇒25(4−x)=100−20x+x2⇒x2+5x=0
⇒x(x+5)=0⇒x=0,−5
As x∈[−9,4], so there are 2 values of x satifying the equation.