The correct option is A 6
16(sin5x+cos5x)=11(sinx+cosx)=0⇒(sinx+cosx){16(sin4x−sin3xcosx+sin2xcos2x−sinxcos3x+cos4x)−11}=0⇒(sinx+cosx){16(1−sin2xcos2x−sinxcosx)}−11=0⇒(sinx+cosx)(4sinxcosx−1)(4sinxcosx+5)=0As4sinxcosx+5≠0,Wehavesinx+cosx=0,4sinxcosx−1=0therequiredvaluesareπ12,5π12,9π12,13π12,17π12,21π12,−THEYARE6SOLUTIONSON[0,2π]