The number of solutions of the equation 5 secθ - 13 = 12 tanθ in [0 , 2π] is
2
5 secθ - 13 = 12 tanθ
or, 13 cosθ + 12 sin θ = 5
or, 13√132+122cosθ + 12√132+122sinθ = 5√132+122
or, cos(θ - α) = 5√313, where cosα = 13√313
∴θ = 2nπ ± cos−1 5√313 + α
= 2nπ ± cos−1 5√313 + cos−1 13√313
As cos−1 5√313 > cos−1 13√313, then
θ∈[0, 2π] , when n = 0 (One value, taking positive sign) and when n = 1 (One value, taking negative sign.)