The number of solutions of the equation 9x2−18|x|+5=0 belonging to the domain of definition of loge{(x+1)(x+2)}, is
f(x)=loge{(x+1)(x+2)}
For the function to be defined
(x+1)(x+2)>0⇒−2>x>−1⇒x∈(−∞,−2)∪(−1,∞)
9x2−18|x|+5=09|x|2−18|x|+5=0⇒9|x|2−18|x|+5=0for(x>0)⇒9|x|2−3|x|−15|x|+5=0⇒3|x|(3|x|−1)−5(3|x|−1)=0⇒(3|x|−1)(3|x|−5)=0⇒|x|=13,53⇒x=13,53,−13,−53
Clearly −53 do not belong to the domain of the function f(x)
So there are 3 solutions belonging to the domain of f(x)
Option C is ccorrect.