We have cosθ+cos7θ+cos3θ+cos5θ=0
⇒2cos4θcos3θ+2cos4θcosθ=0
⇒cos4θ(cos3θ+cosθ)=0
⇒cos4θ(2cos2θcosθ)=0
Now, either cosθ=0
⇒θ=(2n+1)π2,n∈I∴θ=π2,3π2
or cos2θ=0
⇒θ=(2n+1)π4,n∈I∴θ=π4,3π4,5π4,7π4
orcos4θ=0⇒θ=(2n+1)π8,n∈I∴θ=π8,3π8,5π8,7π8,9π8,11π8,13π8,15π8
So, total number of solutions is 14.