cosθ+cos4θ+cos7θ=0⇒2cos4θ⋅cos3θ+cos4θ=0⇒cos4θ=0 or 2cos3θ+1=0
For cos4θ=0
4θ=(2n+1)π2, n∈Z⇒θ=(2n+1)π8⇒θ=π8, 3π8, 5π8, 7π8, 9π8, 11π8, 13π8, 15π8
8 solutions
For 2cos3θ+1=0
cos3θ=−12⇒3θ=2nπ + 2π3 or 2nπ + 4π3, n∈Z⇒θ=2π9, 4π9, 8π9, 10π9, 14π9, 16π9
6 solutions
So, there are total (8+6)=14 solutions.