The number of solutions of the equation |cosx–sinx|=2cosx, xϵ[0,2π] is
2
Three cases can be considered:
(i) cosx=sinx=0 which is impossible
(ii) cosx>sinx, 0≤x<π4 and 5π4<x≤2π
⇒2cosx=cosx−sinx
⇒tanx=−1⇒x=7π4
(iii) cosx<sinx⇒π4<x<5π4
then x=tan−13
So, there are 2 solutions.