The correct option is C 3
cosx=√1−sin2x
Now, we know that
√1−sin2x=√(sinx−cosx)2⇒√1−sin2x=|sinx−cosx|
|sinx−cosx|=⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩sinx−cosx,x∈[π4,5π4]cosx−sinxx∈[0,π4)∪(5π4,2π]
Case 1: When x∈[0,π4)∪(5π4,2π]
cosx=cosx−sinx⇒sinx=0⇒x=0,2π
Case 2: When x∈[π4,5π4]
cosx=sinx−cosx⇒2cosx=sinx⇒tanx=2
Which has a solution in x∈[π4,π2]
Hence, the required number of solutions are 3.