The correct option is A 5
cos3x+cos2x=sin3x2+sinx2
⇒2cos5x2cosx2=2sinxcosx2
⇒cosx2(cos5x2−sinx)=0
⇒cosx2=0 or cos5x2=sinx=cos(π2−x)
⇒x2=(2n+1)π2⇒x=(2n+1)π
or 5x2=2nπ±(π2−x)
Taking positive sign
7x2=2nπ+π2⇒x=(4n+1)π7
Taking negative sign
3x2=2nπ−π2
⇒x=(4n−1)π3
Since 0≤x≤2π,
x=π,π7,5π7,9π7,13π7