The number of solutions of the equation cotx=cotx+1sinx in the interval 0,2π is
Find the number of solution
Case (i): x∈0,π2∪π,3π2
cotx=cotx+1sinx, which is not possible
Case (ii): x∈π2,π∪3π2,2π
-cotx=cotx+1sinx⇒-2cotx=1sinx⇒-2cosxsinx=1sinx⇒cosx=-12∴x=2π3,4π3
Hence, number of solution of the equation is 2.
Let [k] denotes the greatest integer less than or equal to k. Then the number of positive integral solutions of the equation [x[π2]]=⎡⎢ ⎢⎣x[1112]⎤⎥ ⎥⎦ is