The correct option is A 0
tan3xtanx=2
tan3x=2tanx
sin3xcosx=2sinxcos3x
sin3xcosx−sinxcos3x=sinxcos3x
sin(3x−x)=sinxcos3x (sin(A−B)=sinAcosB−cosAsinB)
sin2x=sinxcos3x
2sinxcosx=sinxcos3x (sin2A=2sinAcosA)
2cosx=cos3x
2cosx=4cos3x−3cosx (cos3A=cos3A−3cosA)
4cos3x−5cosx=0
cosx(4cos2x−5)=0
cosx=0 or cos2x=54, (cosx=±√52 is not possible)
Also, cosx=0 is not possible. Else, tanx=∞, denominator of the given equation will not have a value.
Thus, the equation has no solution.