The correct option is C 5
|5tan2θtanθ−12tanθ|+∣∣3sin2θ−sin2θ∣∣=0
⇒(5tan2θ−12)tanθ=0
⇒tanθ=0,tan2θ=125
tan2θ=125
⇒2tanθ1−tan2θ=125
⇒12tan2θ+10tanθ−12=0
⇒6tan2θ+5tanθ−6=0
⇒(3tanθ−2)(2tanθ+3)=0
⇒tanθ=23,−32
and 3sin2θ−sin2θ=0
⇒3sin2θ−2sinθcosθ=0
⇒sinθ(3sinθ−2cosθ)=0
⇒sinθ=0,tanθ=23
∴ Common solutions are the solutions corresponding to either sinθ=0 or tanθ=23
When sinθ=0
⇒θ=0,π,2π
When tanθ=23,
there are two values of θ in [0,2π]
Hence, number of solutions is 5.