The number of solutions of the equation sin2x+cos4x=2 is
0
1
2
∞
Explanation for correct option
Given, sin2x+cos4x=2
⇒sin2x+1-2sin22x=2∵cos2θ=cos2θ-sin2θ&cos2θ+sin2θ=1⇒sin2x-2sin22x-1=0⇒2sin22x-sin2x+1=0∴sin2x=1±1-82·2=1±i74∵i=-1
Therefore, there are no solution for x
Hence, the correct option is A.