The correct option is C 3
Given : cosec−1(sinθ+4sin2θ)+sec−1(−1+6sinθ)=π2
⇒sec−1(−1+6sinθ)=sec−1(sinθ+4sin2θ)(∵sec−1x+cosec−1x=π2)⇒sinθ+4sin2θ=−1+6sinθ⇒4sin2θ−5sinθ+1=0⇒(4sinθ−1)(sinθ−1)=0⇒sinθ=14,1
When sinθ=14
sinθ+4sin2θ=−1+6sinθ=12
But the domain of sec−1x and cosec−1x is (−∞,−1]∪[1,∞), so
sinθ=1⇒θ=π2,5π2,9π2 (∵x∈[0,5π])
Hence, the number of solutions is 3.