The correct option is
D 4Let z=x+iy.
Given,
z2+¯¯¯z=0or, x2−y2+2ixy+x−iy=0
or, (x2−y2+x)+i(2xy−y)=0
Comparing the real and imaginary part we get,
x2−y2+x=0.......(1) and 2xy−y=0.....(2).
From (2) we get, 2xy−y=0
or, y(2x−1)=0
or, y=0 and x=12.
When y=0 then from (1) we get, x2−x=0 or, x=0,−1.
Again x=12 then from (1) we get, y2=14+12=34 or, y=±√32.
So the solutions, in the form (x,y) are (0,0),(−1,0),(±√32,12).
So we have 4 solutions.