The correct option is C 4
Let z=x+iy
Hence
z2+¯z=0
(x+iy)2+(x−iy)=0
x2−y2+i2xy+x−iy=0
(ω)=(x2+x−y2)+i(2xy−y)=0
Hence
Im(ω)=2xy−y=0
y=0 or x=12.
And Real(ω)=0 implies
x2+x−y2=0. If y=0, x=0,−1
And if x=12, y=±√32.
Thus the imaginary number z can be
z=1+√3i2 and 1−√3i2.
Or
z=0+0i and z=−1+0i
Hence 4 solutions.