The number of solutions of the pair of equations 2sin2θ−cos2θ=0 2cos2θ−3sinθ=0 in the interval [0,2π] is
2sin2θ−cos2θ=0
or 1−2cos2θ=0
or cos2θ=12
⇒2θ=π3,5π3,7π3,11π3
or θ=π6,5π6,7π6,11π6
where θ∈[0,2π].
Also 2cos2θ−3sinθ=0
or 2sin2θ+3sinθ−2=0
or (2sinθ−1)(sinθ+2)=0
or sinθ=12[∵sinθ≠2]
⇒θ=π6,5π6, where θ∈[0,2π]
combining Eqs. (i) and (ii), we get θ=π6,5π6
Therefore, there are two solutions.