The correct option is A 1
We have tan−1(x+1)+tan−1(x−1)
=π−tan−13−tan−1x=π−(tan−13+tan−1x)
Taking tan of both sides, we have
(x+1)+(x−1)1−(x+1)(x−1)=−3+x1−3x
⇒2x−6x2=(3+x)(x2−2)
⇒x3+9x2−4x−6=0
⇒(x−1)(x2+10x+6)=0
⇒x=1orx=−5±√19
Clearly x = 1 satisfies the equation as
L.H.S = tan−12+tan−11+tan−10=π+tan−12+11−2
=π−tan−11=3=R.H.S.
While x=−5±√19 do not satisfy the equation.