The correct option is C 2
Given :
sin(x+x2)–sin(x2)=sinx
The interval is [2,3]
Now,
sin(x+x2)=sin(x2)+sinx
⇒2sin(x+x22)cos(x+x22)=2sin(x+x22)cos(x−x22)
⇒2sin(x+x22)[cos(x+x22)−cos(x−x22)]=0
⇒−2sin(x+x22)2sin(x2)sin(x22)=0
So
sin(x22)=0 or sin(x2)=0
or sin(x+x22)=0
Now in interval [2,3]
sin(x22)=0⇒x=√2π
sin(x2)=0⇒x=0,2π,.... no values in the given inetrval
sin(x+x22)=0⇒x+x22=nπ
⇒x2+x−2nπ=0
⇒x=−1±√8nπ+12
checking for (neglecting the negative values)
n=0⇒x=0
n=1⇒x=−1+√8π+12
[−1+√8π+12]∈[2,3]
n=2⇒x=−1+√8×2π+12
[−1+√8×2π+12]>3
Hence the given equation has two solutions
x=√2π,−1+√8π+12