Let
x=a,2y=b and
4z=c⇒a+b+c=9
bc+ac+ab=26
abc=24
General polynomial whose roots are a,b,c is given by P3−(a+b+c)P2+(ab+bc+ac)P−abc=0
⇒P3−9P2+26P−24=0(P−2)(P−3)(P−4)=0
Case 1
x=3,2y=2,4z=4 then (3,1,1)
Case 2
x=2,2y=4,4z=3 then (2,2,34)
Case 3
x=3,2y=4,4z=2 then (3,2,12)
Case 4
x=2,2y=3,4z=4 then (2,32,1)
Case 5
x=4,2y=2,4z=3 then then (4,1,34)
Hence five cases are possible
Option B is correct.