Let total no. of terms be 2n
A.T.Q
⇒T1+T3+T5+⋯T2n−1=24⋯(1)
⇒T2+T4+T6+⋯T2n=30⋯(2)
Subtract 1 from 2
(d+d+d+d+d⋯)=6
nd=6
T2n=T1+212
⇒T2n−a=212
⇒a+(2n−1)d−a=212
⇒2nd−d=212
⇒2(6)−d=212
⇒12−212=d⇒d=32
and nd=6
⇒n(32)=6
⇒n=4
⇒2n=8
To find the value of first term, T2+T4+T6+⋯⋯T2n=30
(a+d)+(a+3d)+(a+5d)⋯⋯[a+(2n−1)d]=30
⇒n2[(a+d)+{a+(2n−1)}]=30
By putting n = 4 and d=32,wegeta=32
So, the series will be 112,3,412⋯