The correct option is A 1
In △ABC, let
∠B=x,∠A=2x⇒∠C=180−3x,
Now,
sinC=sin3x=sin3B⇒sinA=sin2x=sin2B⇒sin2A=sin22B⇒sin2A=2sinBcosBsin2B⇒sin2A=sinB(sinB+sin3B)⇒sin2A=sinB(sinB+sinC)⇒a2=b(b+c)⇒a2−b2=bc ⋯(1)
When b is shortest,
Case 1:a is the largest, then
(b+2)2−b2=b(b+1)⇒2(2b+2)=b(b+1)⇒4(b+1)=b(b+1)⇒b=4
The triangle sides are 4,5,6
Case 2:c is the largest, then
(b+1)2−b2=b(b+2)⇒2b+1=b2+2b⇒b=1
The triangle sides are 1,2,3, which is not possible.
When c is the shortest,
Only one possible side squence
c,b,a→c,c+1,c+2
Using equation (1),
(c+2)2−(c+1)2=(c+1)c⇒2c+3=c2+c⇒c2−c−3=0
Solution is non integers.
Hence, only one such triangle is possible.