The correct option is A 1
We have,
sin−1(1−x)−2sin−1x=π2
⇒sin−1(1−x)=π2+2sin−1x
⇒1−x=sin(π2+2sin−1x)
⇒1−x=cos(2sin−1x)
(Let sin−1x =θ⇒x=sinθ)
⇒1−sinθ=cos2θ=1−2sin2θ
⇒x=sinθ=0,12
For x=12,
sin−1(1−x)−2sin−1 x
=sin−112−2sin−112=−sin−112=−π6≠π2
So, x=12 is not a root of the given equation.
Clearly, x=0 satisfies the equation.
Hence, x=0 is a root of the given equation.