The number of values of θ in the interval (−π2,π2) such that tanθ=cot5θ as well as cos2θ=sin4θ is
Open in App
Solution
tanθ=cot5θ⇒tanθ=tan(π2−5θ)⇒θ=nπ+π2−5θ⇒θ=nπ6+π12,n∈Z ∴θ={±π12,±π4,±5π12}⋯(i)
Now cos2θ=sin4θ cos2θ=cos(π2−4θ)⇒2θ=2nπ±(π2−4θ)⇒θ=(4n+1)π12,−(4n−1)π4,n∈Z∴θ={−π4,π12,π4,5π12}⋯(ii)
from (i) and (ii) θ={−π4,π12,π4,5π12}