The number of values of θ in the interval (−π2,π2) such that θ≠nπ5forn=0,±1,±2 and tanθ=cot5θ as well as sin2θ=cos4θ is
tanθ=cot5θ⇒cos6θ=0⇒4cos32θ−3cos2θ=0⇒cos2θ=0or±√32(i)sin2θ=cos4θ
⇒2sin22θ+sin2θ−1=0⇒(2sin2θ−1)(sin2θ+1)=0⇒sin2θ=−1orsin2θ=12⇒cos2θ=0andsin2θ=−1⇒2θ=−π2⇒θ=−π4
or cos2θ=±√32,sin2θ=12
⇒2θ=π6,5π6⇒θ=π12,5π12
∴θ=−π4,π12,5π12