The correct option is B 2
sin2x−cosx=14
⇒1−cos2x−cosx=14
⇒cos2x+cosx−34=0
⇒4cos2x+4cosx−3=0
⇒4cos2x+6cosx−2cosx−3=0
⇒(2cosx−1)(2cosx+3)=0
⇒(2cosx−1)=0 or (2cosx+3)=0
⇒cosx=12 or cosx=−32
As cosx∈[−1,1], so cosx=12
⇒cosx=cosπ3
We know the general solution of cosx=cosα is x=2nπ±α,n∈Z
So,
x=2nπ±π3
Now for n=0,1, the values of x are
π3,5π3,7π3
But 7π3 is not in [0,2π]
∴x=π3,5π3
So, the number of solution is 2.
Hence, the option (B) is correct.