The number of values of x∈(0,π) satisfying the equation sinx+√3cosx=√2 is
Given the equation: sinx+√3cosx=√2
Divinding both sides with √12+(√3)2=√4=2, we get the equation as:
⇒(sinx×12+√32cosx)=√22
⇒sinx×cosπ3+cosx×sinπ3=1√2
⇒sin(x+π3)=1√2=sinπ4
⇒x+π3=nπ+(−1)nπ4 ∀ n∈Z
Now, substituting value(s) of n=0,1,2,3,⋯ we get:
a.n=0⇒x+π3=π4⇒x=−π12
b.n=1⇒x+π3=π−π4⇒x=5π12
c.n=2⇒x+π3=2π+π4>π
Thus, for x∈(0,π), we have only one solution.