The correct option is C 8
3cos2x−10cosx+7=0
3(2cos2x−1)−10cosx+7=0
3cos2x−5cosx+2=0
(3cosx−2)(cosx−1)=0
cosx=2/3 or cosx=1
therefore general solution is,
x=2nπ±cos−1(2/3) or x=2nπ
so the solution in given interval is,
x=0,cos−1(2/3),2π−cos−1(2/3),2π,2π+cos−1(2/3),4π−cos−1(2/3),4π,4π+cos−1(2/3)
Hence, option 'C' is correct.