The correct option is A 0
The equation is meaningful if |sinx|≠0,1 and 1+cosx≠0
so x≠kπ where, k=0,1,.....n
and x≠(2k+1)π2,k=0,1,.....n−1.
Now log|sinx|(1+cosx)=2
⇔1+cosx=|sinx|2=sin2x=1−cos2x
⇒(1+cosx)(cosx)=0
⇒cosx=0orcosx=−1
⇒cosx=0⇒x=(2k+1)π/2
So there is no x which satisfy the given equation
Ans: A