The correct option is A 0
Given : loga(1−√1+x)=loga2(3−√1+x)
For the log to be defined,
1−√1+x>0, 3−√1+x>0⇒√1+x<1, √1+x<3⇒1+x<1⇒x∈(−∞,0)
For the square root to be defined
1+x≥0⇒x≥−1∴x∈[−1,0)
Now,
loga(1−√1+x)=12loga(3−√1+x)⇒loga(1−√1+x)2=loga(3−√1+x)⇒(1−√1+x)2=3−√1+x⇒2+x−2√1+x=3−√1+x⇒x−1=√1+x
Squaring both sides, we get
⇒x2−2x+1=1+x⇒x2−3x=0⇒x=0,3
But x∈[−1,0), so the number of solution of the equation is 0.