The number of values of x in the interval [0,3π] satisfying the equation 2sin2x+5sinx-3=0 is
6
1
2
4
Explanation for the correct answer:
Given, 2sin2x+5sinx-3=0
⇒2sin2x+6sinx–sinx–3=0⇒2sinxsinx+3-1(sinx+3)=0⇒(2sinx-1)sinx+3=0
sinx=12,sinx=-3 {not possible since -1≤sinx≤1}
Thus, x=π6,5π6,13π6,17π6
Hence, the number of values of x in the interval [0,3π]are 4.
Hence, option D is the correct answer.