The correct option is C 6
3sin2x−7sinx+2=0
⇒3sin2x−6sinx−sinx+2=0
⇒(3sinx−1)(sinx−2)=0
⇒(3sinx−1)=0 or (sinx−2)=0
⇒sinx=13 or sinx=2
As sinx∈[−1,1], so sinx=12
Since sinx is positive in first and second quadrant.
So, sinx=13 has 2 solutions in [0,π]
Similarly, 2 solutions in [2π,3π]
Similarly, 2 solution in [4π,5π]
Therefore, the total number of solution are 6.
Hence, the option (C) i s correct.