The correct option is B 1
1+log5(x2−9)=log5(x2+4x+3) ...(1)
⇒x2−9>0 and x2+4x+3>0
⇒x∈(−∞,−3)∪(3,∞) ...(2)
and x∈(−∞,−3)∪(−1,∞) ...(3)
From (2) and (3),
x∈(−∞,−3)∪(3,∞)
From eqn(1),
log55+log5(x2−9)=log5(x2+4x+3)
⇒log5(5(x2−9))=log5(x2+4x+3)
⇒5(x2−9)=x2+4x+3⇒4x2−4x−48=0⇒x2−x−12=0
⇒x=−3,4
∴x=4 is the only solution.