The number of values of y in [−2π,2π] satisfying the equation |sin 2x| = |cos 2x| = |sin y| is
1
2
3
4
1≤|sin2x|+|cos2x|≤√2and|siny|≤1⇒siny=±1⇒y=±π2,±3π2
If sin24x+cos2x=2sin4x.cos4x then number of values of x satisfying, if x∈[−2π,2π] is