wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The number of ways in which 20 different pearls of two colours can be set alternately on a necklace, there being 10 pearls of each colour, is

A
9!×10!
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
5(9!)2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
(9!)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is D 5(9!)2
Let's first place the pearls of one color in the necklace.
This can be done in 10!10=9! ways.
(rule of circular probability)
Now just permute the 10 remaining pearls of the other kind in the 10 gaps created by the placement of pearls earlier such that different coloured pearls are alternate.
This can be done in 10! ways.
But since such arrangement in necklace is symmetrical we will have to divide by 2
(otherwise same thing will get repeated twice because of symmetry)
Hence total number of ways=9!×10!2=10×(9!2)2=5×(9!2)
Hence, option 'B' is correct.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Binomial Experiment
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon