Since the numbers are in A.P.
∴28=32sin2θ−1+34−2sin2θ
or 28=9sin2θ3=819sin2θ
or 28=x3+81x where x=9sin2θ
or x2−84x+243=0
or (x−81)(x−3)=0
∴x=81 or 3.
∴x=9sin2θ=81,3 or 92,91/2
∴sin2θ=2 or 1/2
since sin2θ cannot be greater than 1 so we choose sin2θ=12
Hence the terms in A.P. are
30,14,27 i.e., 1,14,27.
∴T5=a+4d=1+4.13=53.