Variable (X)
| 2 | 3 | 4 | 5 | 6 |
Probability P(X)
| 115 | 215 | 315 | 415 | 515 |
First six numbers are 1,2,3,4,5,6.
X is bigger number among two numbers.
If X =2 for P(X) = probability of event that bigger of the two chosen number is 2.
So, Cases =(1,2)
So, P(X)=16C2=115---(1)
If X =3
So, favourable cases are =(1,3),(2,3)
P(X)=26C2=215---(2)
If X =4
So, favourable cases are =(1,4),(2,4),(3,4)
P(X)=36C2=315---(3)
If X =5
So, favourable cases are =(1,5),(2,5),(3,5),(4,5)
P(X)=46C2=415---(4)
If X =6
So, favourable cases are =(1,6),(2,6),(3,6),(4,6),(5,6)
P(X)=56C2=515---(5)
We can put all value of P(X),
Required mean = 2.(115)+3.(215)+4.(315)+5.(415)+6.(515)
=7015⇒143