The numerically greatest term in the expansion of (2+3x)12 when x=56 is:
12C7(52)7.25
(2+3x)12 at x=56=(52)12[1+45]12
|Tr|⇔|Tr+1| as |r(n−r+1)x|⇔1
i.e., |r.5(13−r)4|⇔1 i.e., r⇔529
r=5<529⇒T5<T6
r=6>529⇒T6<T7
∴ T6 is the greatest term in the expansion of [1+45]12
Hence greatest term in the expansion of (2+3x)12 at x+56 is
(512)12.12C5(45)5 i.e., 12C7(52)7.25