The numerically greatest term in the expansion of (2x−3y)12) when x=1,y=53, is
Given expansion is (2x−3y)12
Since, Numerically greatest term in the expansion (1−α)n is
(n+1)|α||α|+1 th term.
Now,
(2x−3y)12
=(2x)12(1−3y2x)12
Here, |α|=|−3y2x|, n=12
Numerically greatest term at x=1,y=53 is,
(n+1)|α||α|+1 th term.
=(12+1)|−3y2x||−3y2x|+1
=(12+1)|3y2x||3y2x|+1
=(12+1)|3(53)2(1)||3(53)2(1)|+1
=13(52)52+1
=65272
=652×27
=9.28
Since, 9<9.28<10
Hence, the numerically greatest term is 10th term