We have,
sinx+sin2x+sin3x=cosx+cos2x+cos3x
⇒sinx+sin3x+sin2x=cosx+cos3x+cos2x
⇒2sinx+3x2cosx−3x2+sin2x=2cosx+3x2cosx−3x2+cos2x
⇒2sin2xcosx+sin2x=2cos2xcosx+cos2x
⇒sin2x(2cosx+1)=2cos2x(cosx+1)
⇒sin2x(2cosx+1)−cos2x(2cosx+1)=0
⇒(2cosx+1)(sin2x−cos2x)=0
If
2cosx+1=0
2cosx=−1
cosx=−12
cosx=−cosπ3
cosx=cos(π−π3)
x=2π3
If
sin2x−cos2x=0
⇒sin2x=cos2x
⇒tan2x=1
⇒tan2x=tanπ4
⇒x=π8
Hence, this is the answer.