The correct option is A Parabolic
The general form of 2nd order partial differential equation is:
A∂2U∂x2+B∂2U∂x∂y+C∂2U∂y2+f(x,y,u,∂U∂x,∂U∂y)=0 .... (i)
∂T∂t=∂2T∂x2⇒1.∂2T∂x2+0.∂2T∂x∂Y+0.∂2T∂Y2+∂T∂t=0
On comparision, A=1,B=0,C=0
B2−4AC=0−4(1)(0)=0
∴ Given equatin is parabolic.