The open-loop transfer function of a unity feedback configuration is given as G(s)=K(s+4)(s+8)(s2−9)
The value of a gain K(>0) for which −1+j2 lies on the root locus is
G(s)=K(s+4)(s+8)(s2−9)
=K(s+4)(s+8)(s+3)(s−3)
For the point (-1+2j) to lie on the root locus the angle condition must be satisfy
i.e ∠G(s)H(s)=±(2Q+1)180∘
Taking LHS:
∠G(s)H(s)|s=−1+2j
=∠K+∠(s+4)∠(s+8)+∠(s+3)+∠(s−3)
=∠K+∠(−1+2j+4)∠(−1+2j+8)+∠(−1+2j+3)+∠(−1+2j−3)
=0+tan−1(23)tan−1(27)+tan−1(1)+180∘−tan−1(12)
=tan−123−tan−127−tan−1−180∘+tan−112
33.69∘−15.945∘−45∘−180∘+26.565∘
≃180∘
As angle condition is satisfy the value of system gain K can be obtained by using magnitude condition
i.e. |G(s)H(s)|s=−1+2j=1
=K√(−1+4)2+22√(−1+8)2+22.√(−1+3)2+22.√(−1−3)2+22
=1
⇒K√9+4√49+4√4+4√16+4=1
⇒K√13√53√8√20=1
K=√53×8×20√13=25.54