The option with the values of L that satisfying the equation ∫4π0et(sin6at+cos4at)dt∫π0et(sin6at+cos4at)dt=L, is
L=e4π−1eπ−1
I1=∫4π0et(sin6at+cos6at)dt=∫π0et(sin6at+cos6at)dt+∫2ππet(sin6at+cos6at)dt+∫3π2πet(sin6at+cos6at)dt+∫4π3πet(sin6at+cos6at)dt∴I1=I2+I3+I4+I5Now,I3=∫2ππ(etsin6at+cos6at)dtPut t=π+t⇒dt=dt∴I3=∫π0eπ+t.(sin6at+cos6at)dt=eπ.I2...(ii)Now,I4=∫3π2πet(sin6at+cos6at)dt=e2π.I2...(iii)
and I5=∫4π3πet(sin6at+cos6at)dt=e3π.I2....(iv)
From Eqs. (i), (ii), (iii) and (iv), we get
I1=I2+eπ.I2+e2π.I2+e3π.I2=(1+eπ+e2π+e3π)I2∴L=∫4π0et(sin6at+cos4at)dt∫π0et(sin6at+cos4at)dt=(1+eπ+e2π+e3π)=(e4π−1)eπ−1 for aϵR