The order and degree of the differential equation of all tangent lines to the parabola y=x2 is
letpointatwhichtangentisdrawnis(a,a2)thenslopeoftangent=(dydx)nowy=x2(dydx)=2x=2a∴eqnoftangenty−a2=2a(x−a)y−a2=2ax−2a2y=2ax−a2now,weneedtofinditsdifferentialequationdifferentiatebothsides,weget(dydx)=2aora=((12)(dydx))∴y=2×(12)(dydx)−((12)(dydx))2clearly,order=1anddegree=2