The correct option is
B two
The equation of family of circle is
(x−a)2+(y−b)2=r2 ---- ( 1 )
Clearly, the given equation have two arbitrary constants, so we differentiate twice w.r.t x
⇒ 2(x−a)+2(y−b)=0
⇒ (x−a)+(y−b)dydx=0
⇒ (x−a)=−(y−b)dydx ---- ( 2 )
Differentiate again w.r.t x,
1+(y−b)d2ydx2+(dydx)2=0
⇒ (y−b)=−1+(dydx)2d2ydx2 ---- ( 3 )
Substitute ( 3 ) and ( 2 ) in ( 1 ), we get,
⇒ ⎡⎢
⎢
⎢
⎢
⎢⎣1+(dydx)2d2ydx2dydx⎤⎥
⎥
⎥
⎥
⎥⎦2+[1+(dydx)2]2d2ydx2=r2
⇒ [1+(dydx)2]2[1+(dydx)2]=r2(d2ydx2)2
⇒ [1+(dydx)2]3=r2(d2ydx2)2
∴ We can see required order is 2
as the Order of a differential equation is the order of the highest derivative present in the equation.