The correct option is
D (3,1,4)Orthocentre is point of intersection of altitudes of triangle
Equation of line through A&C
x−24−2=y−10−1=z−54−5⇒x−22=y−1−1=z−5−1
Equation of line trough B&Cx−34−3=y−20−2=z−34−3⇒x−31=y−2−2=z−31
Equation of altitude from A on BC
P is foot of perpendicular genneral equation of P≡(r+3,−2r+2,r++3)
∴d.r′sofAP≡(r+3+2,2r+2−1,r+3−5)≡(r+1,−2r+1,r−2)AP⊥BC⇒(r+1)1+(−2r+1)(−2)+(r−2)1=0⇒r=12∴P≡(12+3,12×−2+2,12+3)≡(72,1,72)
Equation of line through A&Px−22−72=y−11−1=z−55−72⇒x−2−3=y−10=z−53⇒x−2−1=y−10=z−51→(1)
For equation of Altitude from B on AC
Let a be a point on line AC be foot of 1.
∴Q≡(2r+2,−r+1,−r+5)d.r′sofBQ=(2r+2−3,−r+1−2,−r+5−3)=(2r−1,−r−1,−r+2)BQ⊥AC⇒(2r−1)2+(−r−1)(−1)+(−r+2)(−1)=0⇒=12∴d=(2×12+2,−12+1,−12+5)=(3,12,92)
Equation of line from B and Q,
x−33−3=y−22−12=z−33−32⇒x−30=y−23=z−3−3→(2)
Finding point of intersection of (1)&(2) that will be orthocentre,
Let H≡(3,3r+2−1=−3r+3−51)⇒r=−13∴3−2−1=3r+2−10=−3r+3−51⇒r=−13∴H=(3,3×−13+2,−3×−13+3)⇒H=(3,1,4)
Answer D