Given:x+y−3=0 is a line and pair of lines 6x2−5xy−6y2+x+5y−1=0
6x2−5xy−6y2+x+5y−1=0
6x2−x(5y−1)+(−6y2+5y−1)=0 is quadratic in x
⇒x=(5y−1)±√(5y−1)2−4×6×(−6y2+5y−1)12
⇒x=(5y−1)±√25y2+1−10y+144y2−120y+2412
⇒x=(5y−1)±√169y2−130y+2512
⇒x=(5y−1)±√(13y−5)212
⇒x=(5y−1)±(13y−5)12
⇒12x=(5y−1)±(13y−5)
⇒12x=5y−1+13y−5,5y−1−13y+5
⇒12x=18y−6,−8y+4
Thus,2x−3y=−1 and 3x+2y=1
Let H(h,k) be the orthocentre.
Slope of 2x−3y=−1 is −2−3=23
Slope of 3x+2y=1 is −32=−32
Slope of x+y−3=0 is −1
From △ABC,
Solving the equations 3x+2y=1 ........(1)
x+y=3 ........(2)
2x−3y=−1 .......(3)
3×(2)−1×(1)⇒3x+3y−3x−2y=9−1
⇒y=8
Put y=8 in (2)
⇒x=3−y=3−8=−5
∴B is (−5,8)
2×(2)−1×(3)⇒2x+2y−2x+3y=6+1
⇒5y=7
Put y=75 in (2)
⇒x=3−y=3−75=15−175=85
∴C is (85,75)
3×(2)−2×(1)⇒6x−9y−6x−4y=−3−2
⇒−13y=−5
Put y=513 in (1)
⇒3x=1−2y=1−2×513=13−1013=313
⇒x=113
∴A is (113,513)
Let H(h,k) be the orthocentre.
⇒(SlopeofAH)(SlopeofBC)=−1
⇒k−513h−113×−1=−1
⇒k−513=h−113
⇒k−h=−1+513=413 ........(1)
⇒(SlopeofBH)(SlopeofAC)=−1
⇒k−8h+5×23=−1
⇒2k−16=−3h−15
⇒2k+3h=1 ........(2)
Put k=413+h from (1) in (2) we get
⇒2(413+h)+3h=1
⇒813+2h+3h=1
⇒2h+3h=1−813
⇒5h=13−813
⇒5h=513
∴h=113
Put h=113 in k=413+h we get
k=413+113=513
∴ the orthocentre H is (113,513)=(1×1313×13,5×1313×13)=(13169,65169)