The correct option is B (52,52√3)
Given coordinates of the vertices of triangle are (5,0),(0,0) and (52,5√32)
Assuming A=(5,0),B=(0,0),C=(52,5√32)
Now, finding the sidelengths
AB=5 units BC=
⎷(52)2+(5√32)2=5 units AC=
⎷(52)2+(5√32)2=5 units
So, the triangle is equilateral.
Orthocentre
H≡(x1tanA+x2tanB+x3tanCtanA+tanB+tanC,y1tanA+y2tanB+y3tanCtanA+tanB+tanC)
∵tanA=tanB=tanC=√3
⇒H≡(x1+x2+x33,y1+y2+y33)
⇒H≡⎛⎜
⎜
⎜
⎜⎝5+523,5√323⎞⎟
⎟
⎟
⎟⎠∴H≡(52,52√3)