The orthogonal trajectories for the family of curves r2=a2cos4θ are:
We have, r2=a2cos4θ=a2(1−2sin22θ)...(1)
Differentiating w.r.t. θ, we get
2rdrdθ=−4a2sin4θ...(2)
Eliminating a from (2) using (1), we get
2rdrdθ=−4sin4θcos4θ...(3)
Replacing drdθ with −r2dθdr in (3), we get
2rdθdr=4sin4θcosθ
⟹2rdr=cosθsinθdθ
Integrating, we get
2logr=14logsin4θ+2logc
⟹r8=c8sin4θ