The correct option is A [1−j],[j−1]
Given A=[0−110] so C.Equation is |A=λI|=0
⇒∣∣∣0−λ−110−λ∣∣∣=0⇒λ=±j
Now consider AX=λX
⇒ (A−λI)X=0
or [0−λ110−λ][x1x2]=[00] ..(1)
Case-I : Put λ=j in equation (1)
i.e. [−j−11−j][x1x2]=[00]
−jx1−x2=0⇒x1=jx2
so X1=[jkk]∼[j1]
Similarly when we put λ=−j in (1)
We get X2=[−j1]
So X1=[j1]×(−j)→[1−j]
and X2=[−j1]×(−1)→[j−1]
So option (a.)